The search for the neutron electric dipole moment at the Paul Scherrer Institut

Guillaume Pignol For the nEDM collaboration

Osaka, April 9 2010

Guillaume Pignol (TUM)

Neutron EDM at PSI

09/04/2010

The neutron EDM collaboration

M. Burghoff, S. Knappe-Grüneberg, A. Schnabel, L. Trahms
G. Ban, Th. Lefort, Y. Lemiere, O. Naviliat-Cuncic, E. Pierre¹,
G. Quéméner, G. Rogel²
K. Bodek, St. Kistryn, J. Zejma
A. Kozela
N. Khomutov
P. Knowles, A.S. Pazgalev, A. Weis
P. Fierlinger, B. Franke¹, M. Horras¹, F. Kuchler, G. Pignol
D. Rebreyend

G. Bison

S. Roccia, N. Severijns, N.N.

G. Hampel, J.V. Kratz, T. Lauer, C. Plonka-Spehr, N. Wiehl, J. Zenner¹

W. Heil, A. Kraft, Yu. Sobolev³

I. Altarev, E. Gutsmiedl, S. Paul, R. Stoepler

Z. Chowdhuri, M. Daum, M. Fertl, R. Henneck, A. Knecht⁴, B. Lauss, A. Mtchedlishvili, G. Petzoldt, P. Schmidt-Wellenburg, G. Zsigmond

<u>K. Kirch¹, N.N.</u>

Physikalisch Technische Bundesanstalt. Berlin Laboratoire de Physique Corpusculaire, **Caen** Institute of Physics, Jagiellonian University, Cracow Henrvk Niedwodniczanski Inst. Of Nucl. Physics, Cracow Joint Institute of Nuclear Reasearch, Dubna Département de physique, Université de Fribourg, Fribourg Excellence Cluster Universe, Garching Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Biomagnetisches Zentrum, Jena Katholieke Universiteit, Leuven Inst. für Kernchemie, Johannes-Gutenberg-Universität, Mainz Inst. für Physik, Johannes-Gutenberg-Universität, Mainz Technische Universität, München

Paul Scherrer Institut, Villigen

Eidgenössische Technische Hochschule, Zürich

also at: ¹Paul Scherrer Institut, ²ILL Grenoble, ³PNPI Gatchina, ⁴University of Zürich

OILL nEDM spectrometer

 $d_n < 3 \times 10^{-26} \ e \, {
m cm}$ Backer *et al*, Phys. Rev. Lett. **97** (2006)

Guillaume Pignol (TUM)

Neutron EDM at PSI

On its way to PSI

Guillaume Pignol (TUM)

Neutron EDM at PSI

Waiting for the UltraCold neutrons

Shield in place, July 2009

Guillaume Pignol (TUM)

Neutron EDM at PSI

OILL nEDM spectrometer

Guillaume Pignol (TUM)

Neutron EDM at PSI

The Mercury comagnetometer

Guillaume Pignol (TUM)

Neutron EDM at PSI

09/04/2010

Neutron-mercury clock comparison

April 2008, 5 days of data without E field

Interpreted as a test of Lorentz invariance

 $b < 2 \times 10^{-20} \text{ eV}$ Altarev *et al*, Phys. Rev. Lett. **103** (2009)

Neutron EDM at PSI

nEDM runs, december 2008

6 days of data, E field reversed every 2 hours

PhD thesis S. Roccia

Gravitational effect

Center of gravity height difference is $~hpprox 2~{
m mm}$

R depends on vertical gradients

$$R = \frac{\gamma_n}{\gamma_{\rm Hg}} \left(1 - \frac{(\partial B/\partial z)h}{B} \right)$$

Neutron EDM at PSI

Gradient control: Cs magnetometers

	Guillaume Pignol (TUM) Neutron EDM at PSI	09/04/2010
--	---	------------

Gravitational effect measured at ILL

Guillaume Pignol (TUM)

Neutron spin relaxation times

correlation T1-T2, cycle 153

Guillaume Pignol (TUM)

Neutron EDM at PSI

Gravitational effect measured at ILL

Guillaume Pignol (TUM)

PSI,2009 caracterisation of the shield

Guillaume Pignol (TUM)

Neutron EDM at PSI

Measurements outside the shield

Magnetic field lines calculated for

Infinite μ Infinite cylinder

Investigations on shielding factors

Demagnetization, mechanical stability

Field mapping inside the shield

Vectorial fluxgate

8 Scalar Cesium magnetometers

Neutron EDM at PSI

Field mapping with the fluxgate

Before removing a magnetic nut Bmax = 60 nT At radius 40 cm After removing the magnetic nut Bmax = 5 nT At radius 40 cm

3He depolarization mesurement

B0 = 1 μ T is homogenehous at the level of 0.5 nT over the storage volume

Guillaume Pignol (TUM)

Neutron EDM at PSI

Magnetism removal in BMRS2 Berlin

Bottom electrode field map at 3 cm distance

Before demagnetization Bmax = 200 pT After demagnetization Bmax = 20 pT

OILL is upgrated

OLD

Concept Magnetic shield

PARTIALLY NEW

Storage chamber B0 coil and correction coils Hg comagnetometer

BRAND NEW

UCN detectors Spin polarization & analysis Demagnetization stuff HV stuff Electronics & software Vaccuum system Surronding field compensation huge coils

Neutron EDM at PSI

Conclusions, our project

Phase I: OILL at ILL

OILL is working again. EDM runs for 6 days $d_n = (-3 \pm 3) \times 10^{-25} \ e \ \mathrm{cm}$ Test of Lorentz invariance $b < 2 \times 10^{-20} \ \mathrm{eV}$ Phase II: OILL at PSI (2009-2012) Statistics x100 Goal: $d_n < 5 \times 10^{-27} \ e \ \mathrm{cm}$

Phase III: build a new nEDM spectrometer

Shield funded. Goal: $d_n < 5 \times 10^{-28} \ e \, {\rm cm}$