RCNP - Osaka - April 2010

Probing new CP-odd physics with EDMs

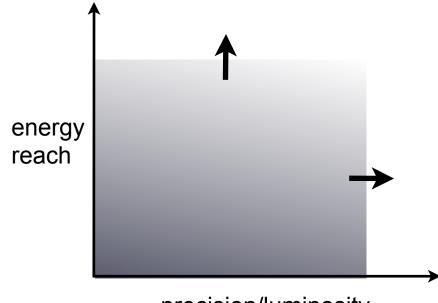
Adam Ritz University of Victoria

with M. Pospelov [For a review, see hep-ph/0504231]

1

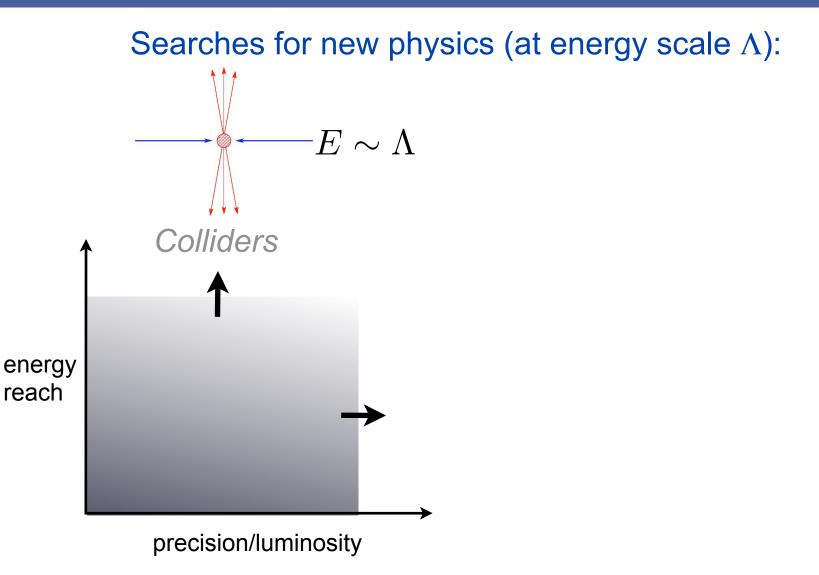
Precision Tests as Probes for New Physics

Searches for new physics (at energy scale Λ):

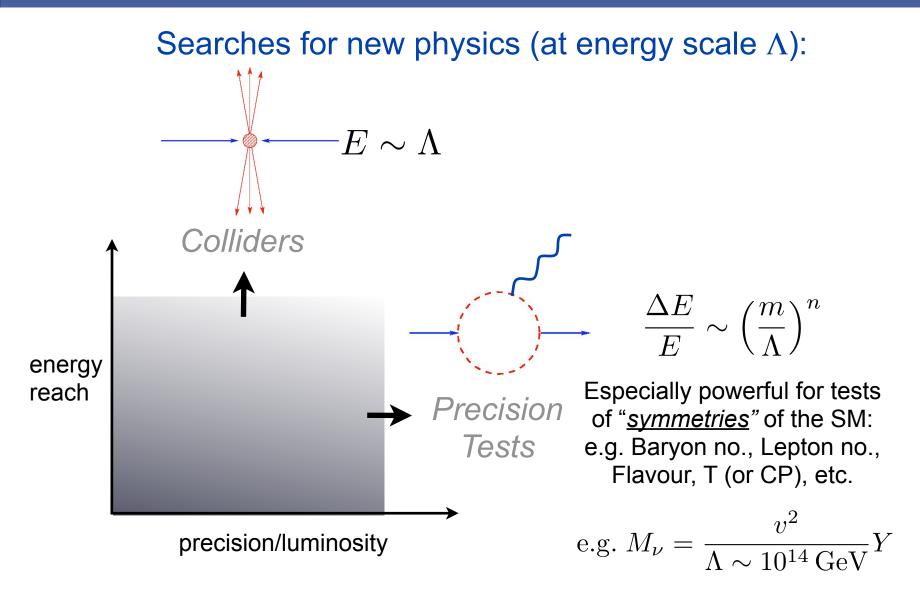


precision/luminosity

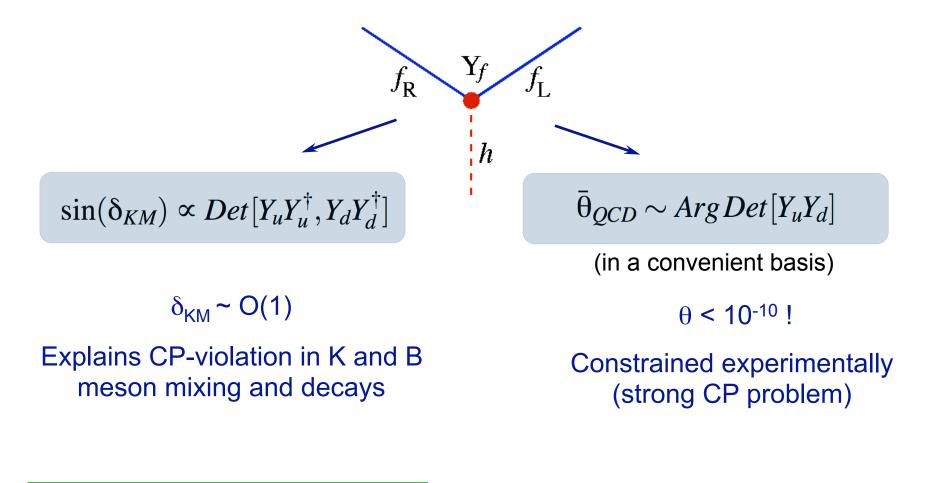
Precision Tests as Probes for New Physics



Precision Tests as Probes for New Physics



CP Violation in the Standard Model

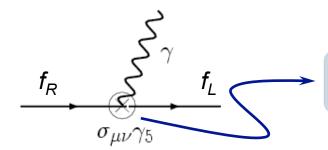


Do we anticipate other CP-odd sources ?

- Required by baryogenesis
- Generic with more fields (eg MSSM)

CP-violation and EDMs

Within the SM, CP-violation is hidden behind the flavour structure $J_{CP} \sim 10^{-5} \sin(\delta_{KM})$ [Jarlskog '85] Look for new sources of CPviolation in flavour diagonal channels, with small SM bkgd



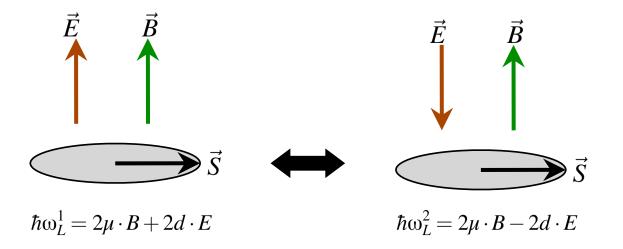
$$H = -d\vec{S} \cdot \vec{E}$$

Sensitivity through EDMs of neutrons, and para- and dia-magnetic atoms and molecules (violate T,P)

Currently, all experimental data \Rightarrow EDMs vanish to very <u>high precision</u> leading to very strong constraints on new physics.

Sensitivity

• Measure Larmor precession frequency in (anti-)aligned E and B fields



$$d = \frac{\hbar}{4E} (\omega_L^1 - \omega_L^2) \sim (\text{loop}) \frac{m_f}{\Lambda_{\text{CP}}^2}$$

Given $E \sim 10 \, kV/cm$, $\delta \omega \sim 10^{-6} \, \text{Hz} \Longrightarrow \Lambda_{\text{CP}} \sim 1 \, \text{TeV}$

Experimental Status

Neutron EDM	$ d_n < 3 \times 10^{-26} e \ cm$	[Baker et al. '06]
Thallium EDM (paramagnetic)	$ d_{Tl} < 9 \times 10^{-25} e \ cm$	[Regan et al. '02]
Mercury EDM (diamagnetic)	$ d_{Hg} < 2 \times 10^{-28} e \ cm$	[Romalis et al. '00]

Experimental Status

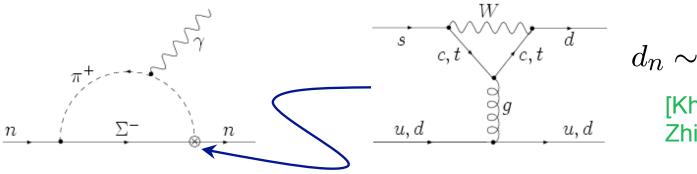
Neutron EDM	$ d_n < 3 \times 10^{-26} e \ cm$	[Baker et al. '06]
Thallium EDM (paramagnetic)	$ d_{Tl} < 9 \times 10^{-25} e \ cm$	[Regan et al. '02]
Mercury EDM (diamagnetic)	$ d_{Hg} < 3 \times 10^{-29} ecm$	[Griffith et al. '09]

 $\mathcal{O}(10^4) \times e \, l_p \, !!$

Experimental Status

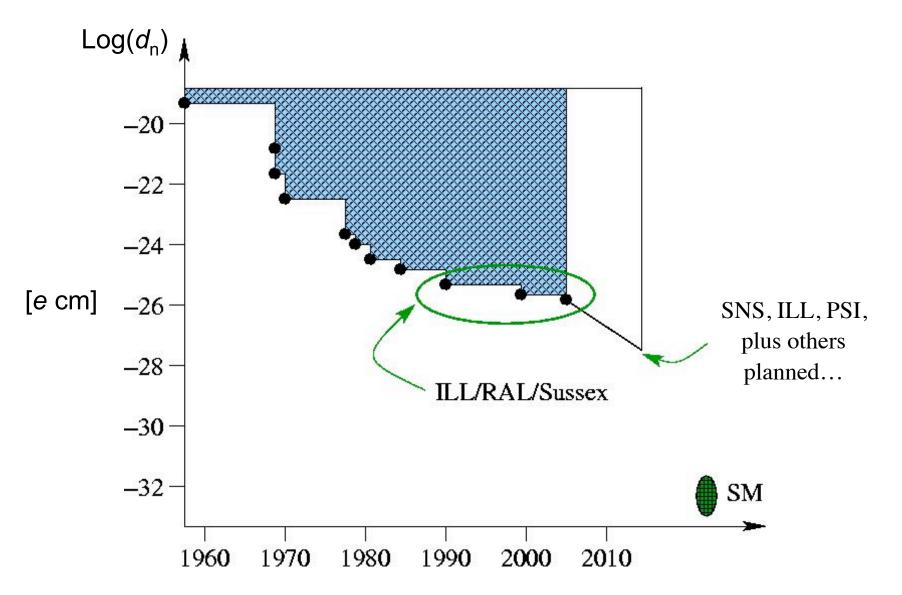
Neutron EDM	$ d_n < 3 \times 10^{-26} e \ cm$	[Baker et al. '06]
Thallium EDM (paramagnetic)	$ d_{Tl} < 9 \times 10^{-25} e \ cm$	[Regan et al. '02]
Mercury EDM (diamagnetic)	$ d_{Hg} < 3 \times 10^{-29} ecm$	[Griffith et al. '09]

<u>Small</u> SM background (via CKM phase)



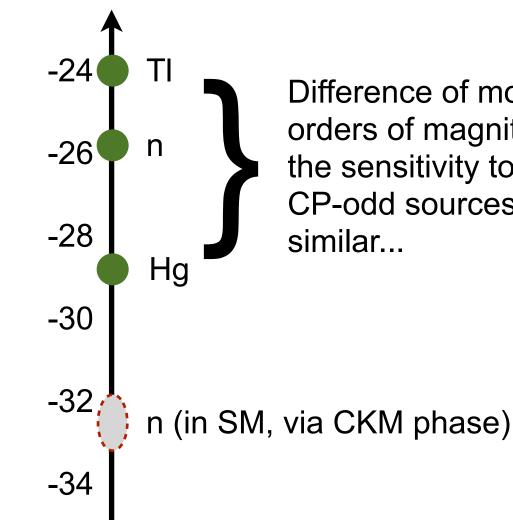
$$l_n \sim 10^{-32} e\,cm$$

Progress in the neutron EDM bound



Schematic view of the bounds

log(d [e cm])



Difference of more than 4 orders of magnitude, but the sensitivity to underlying CP-odd sources is very

Classification of CP-odd operators at 1GeV

Effective field theory is used to provide a model-independent parametrization of (flavor-diagonal) CP-violating operators at 1GeV

$$\mathcal{L} = \sum_{i} \frac{c_{i}}{M^{d-4}} O_{d}^{(i)}$$

$$\underline{\mathsf{Dimension 4}}: \quad \bar{\theta}\alpha_{s}G\tilde{G}$$

$$\bar{\theta} = \theta_{0} + ArgDet(M_{q})$$

$$\underline{\mathsf{Dimension 6}}: \quad \sum_{q=u,d,s} d_{q}\bar{q}F\,\sigma\gamma_{5}q + \sum_{q=u,d,s} \tilde{d}_{q}\bar{q}G\sigma\gamma_{5}q + d_{e}\bar{e}F\,\sigma\gamma_{5}e + wg_{s}^{3}GG\tilde{G}$$

$$\underline{\mathsf{Dimension 8}}: \quad \sum_{q=u,d,s} C_{qq}\bar{q}q\bar{q}i\gamma_{5}q + C_{qe}\bar{q}q\bar{e}i\gamma_{5}e + \cdots$$

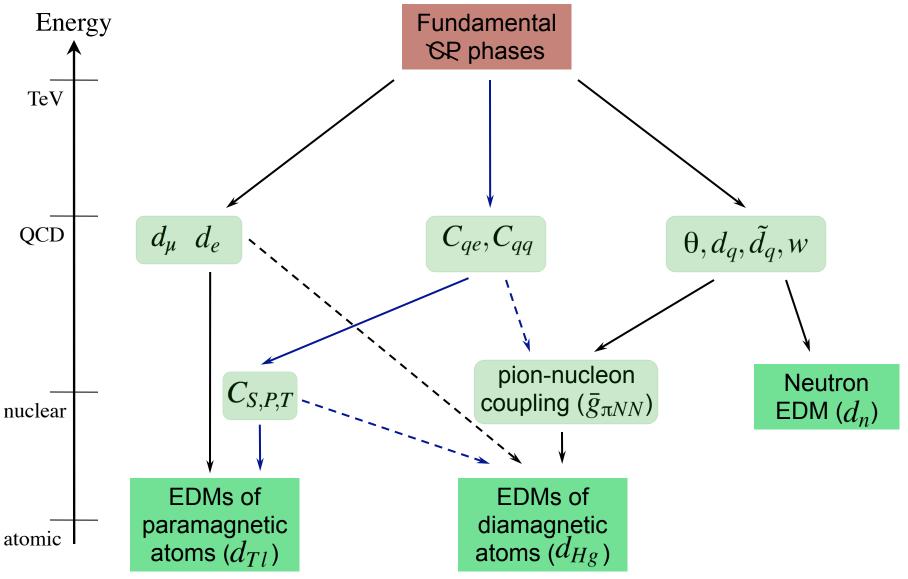
$$C_{S}\bar{N}N\bar{e}i\gamma_{5}e$$

Classification of CP-odd operators at 1GeV

Effective field theory is used to provide a model-independent parametrization of (flavor-diagonal) CP-violating operators at 1GeV

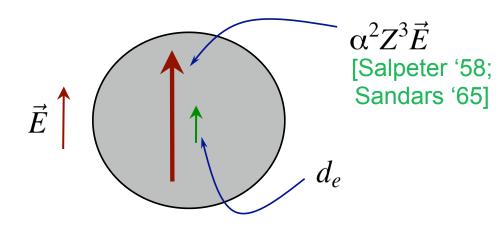
$$\mathcal{L} = \sum_{i} \frac{C_{i}}{M^{d-4}} O_{d}^{(i)}$$
Dimension 4:
 $\bar{\Theta} = \Theta_{0} + ArgDet(M_{q})$
Dimension "6":
 $\sum_{q=u,d,s} d_{q}\bar{q}F\sigma\gamma_{5}q + \sum_{q=u,d,s} \tilde{d}_{q}\bar{q}G\sigma\gamma_{5}q + d_{e}\bar{e}F\sigma\gamma_{5}e + wg_{s}^{3}GG\tilde{G}$
Dimension "8":
 $\sum_{q=u,d,s} C_{qq}\bar{q}q\bar{q}i\gamma_{5}q + C_{qe}\bar{q}q\bar{e}i\gamma_{5}e + \cdots$
 $C_{S}\bar{N}N\bar{e}i\gamma_{5}e$

Origin of the EDMs



Atomic Schiff screening factors

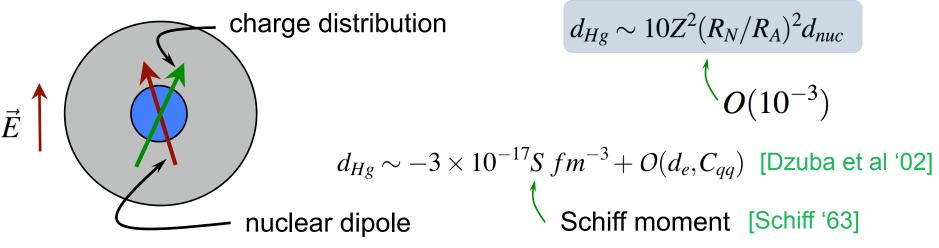
Paramagnetic EDMs (relativistic violation of Schiff screening)



$$d_{Tl} \sim -10 \alpha^2 Z^3 d_e$$

)
 $10 \alpha^2 Z^3 \approx 585$
[Liu & Kelly '92]

Diamagnetic EDMs (finite size violation of Schiff screening)



Computations

1. TI EDM (paramagnetic) (atomic)

$$d_{Tl} \sim -585 d_e - 2e \sum_{q=d,s,b} C_{qe}/m_q$$

[Liu & Kelly '92; Khatsymovsky et al. '86]

<u>2. neutron EDM</u> (chiralPT, NDA, QCD sum rules, ...) $\Rightarrow |\theta| < 10^{-10}$

$$d_n \sim (0.4 \pm 0.2) [4d_d - d_u + 2.7e(\tilde{d}_d + 0.5\tilde{d}_u) + \cdots] + O(d_s, w, C_{qq})$$

[Pospelov & AR '99,'00]

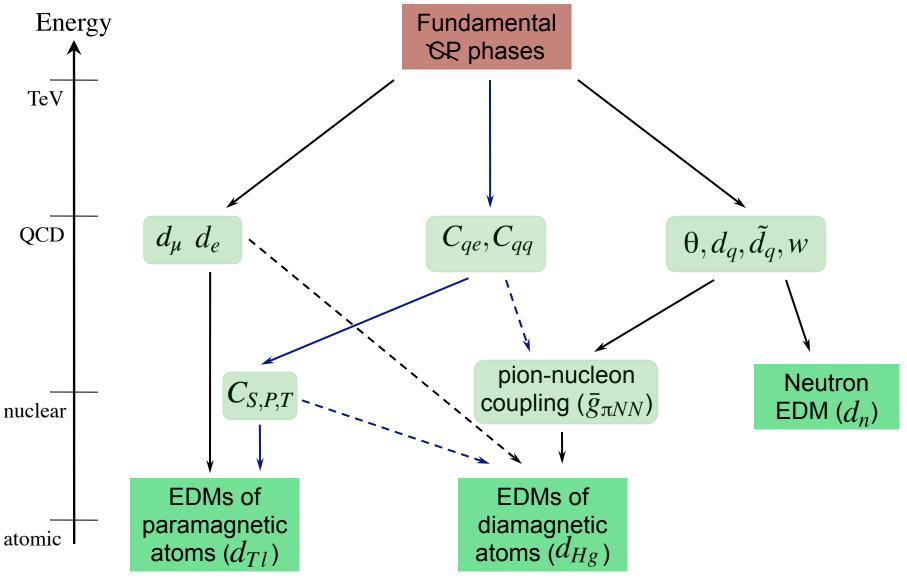
3. Hg EDM (diamagnetic) (atomic+nuclear+QCD)

$$d_{Hg} \sim 10^{-3} d_{nuc} \sim -3 \times 10^{-17} Sfm^{-3} + O(d_e, C_{qq})$$

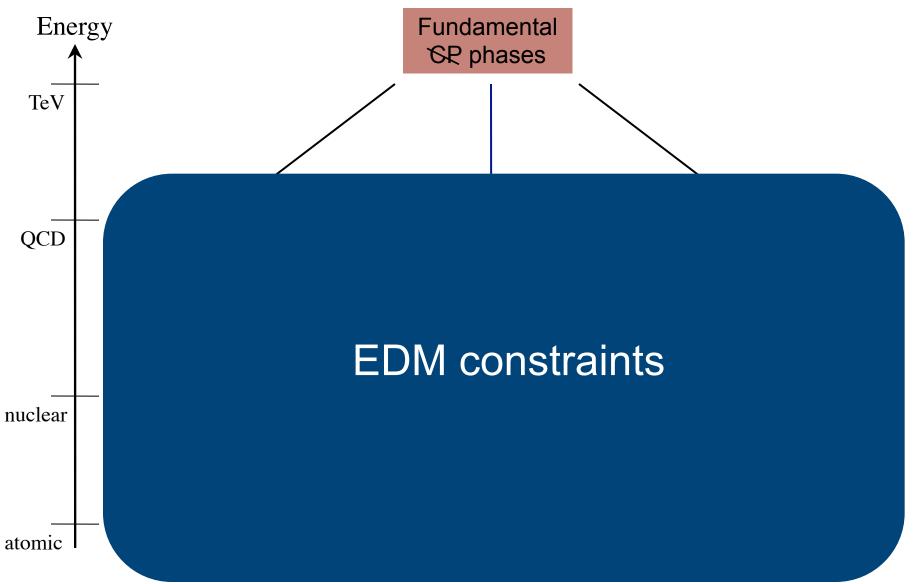
[Dzuba et al. '02; Flambaum et al. '86; Dmitriev & Senkov '03; de Jesus & Engel '05]

 $\label{eq:gammaNN} \searrow \ \bar{g}_{\pi NN}(\tilde{d}_q) \sim (1-6)(\tilde{d}_u - \tilde{d}_d) + O(\tilde{d}_u + \tilde{d}_d, \tilde{d}_s, w) \quad \text{[Pospelov '01]}$

Current status



Current status



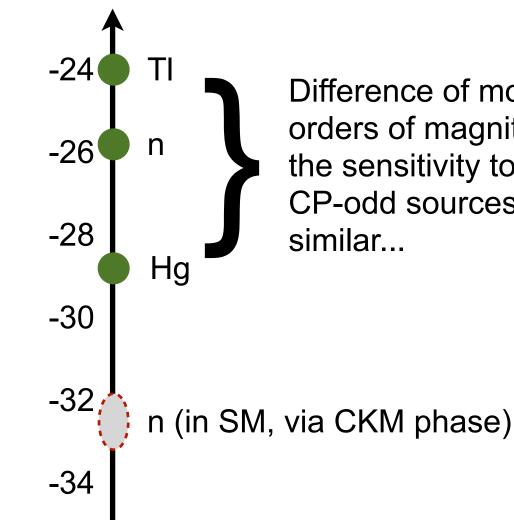
Resulting Bounds on fermion EDMs & CEDMs

TI EDM (±20%)	$\left d_e + e(26MeV)^2 \left(3\frac{C_{ed}}{m_d} + 11\frac{C_{es}}{m_s} + 5\frac{C_{eb}}{m_b} \right) \right < 1.6 \times 10^{-27} e \ cm$
Neutron EDM (±50%)	$\left e(\tilde{d}_d + 0.5\tilde{d}_u) + 1.3(d_d - 0.25d_u) + O(\tilde{d}_s, w, C_{qq}) \right < 2 \times 10^{-26} e \ cm$
Hg EDM (±100%)	$e \tilde{d}_d - \tilde{d}_u + O(d_e, \tilde{d}_s, C_{qq}, C_{qe}) < 3 imes 10^{-27} e\ cm$

Sensitivity:
$$d_f \sim (couplings) \times \frac{m_f}{\Lambda_{CP}^2}$$

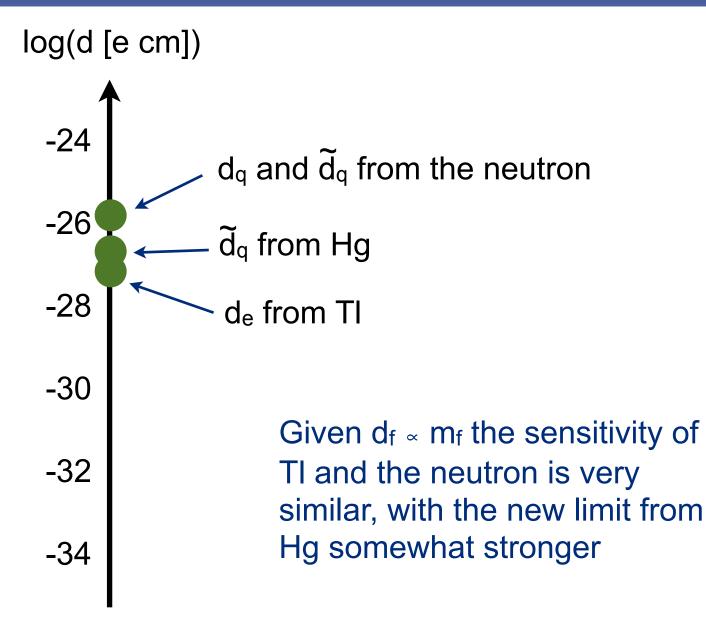
Summary of the bounds

log(d [e cm])



Difference of more than 4 orders of magnitude, but the sensitivity to underlying CP-odd sources is very

Summary of the bounds



Constraints on TeV-scale models

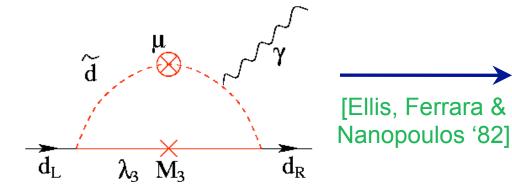
• <u>E.G. MSSM</u>: In general, the MSSM contains many new parameters, including multiple new CP-violating phases, e.g.

$$\Delta \mathcal{L} \sim -\mu \,\tilde{H}_1 \tilde{H}_2 + \mathcal{B}\mu \,H_1 H_2 + h.c.$$

$$-\frac{1}{2} \left(M_3 \,\bar{\lambda}_3 \lambda_3 + M_2 \,\bar{\lambda}_2 \lambda_2 + M_1 \,\bar{\lambda}_1 \lambda_1 \right) + h.c.$$

$$-\mathcal{A}_{ij}^d \,H_1 \tilde{q}_{Li} \tilde{q}_{Rj} + h.c + \cdots$$
With a universality assumption, 2 physical CP-odd phases $\{\theta_\mu, \theta_A\}$

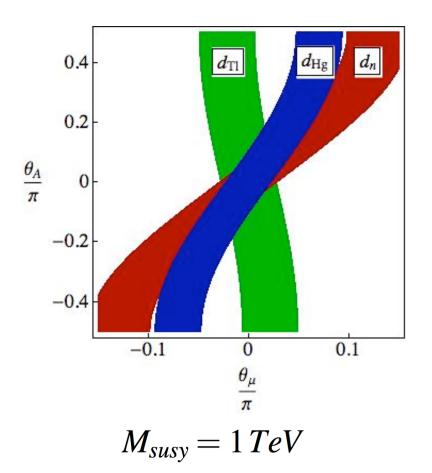
EG:1-loop EDM contribution:



$$\frac{d_d}{m_d} \sim \frac{1}{16\pi^2} \frac{\mu m_{\tilde{g}}}{M^4} \sin \theta_{\mu}$$

M ~ sfermion mass

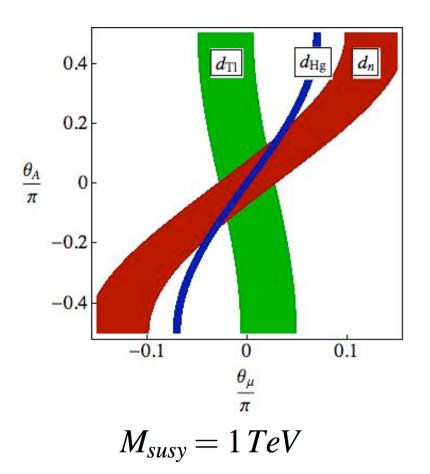
SUSY CP Problem



Generic Implications \Rightarrow Soft CP-odd phases $O(10^{-2} - 10^{-3})$

[Olive, Pospelov, AR, Santoso '05] [Also: Barger et al '01, Abel et al '01, Pilaftsis '02, Argyrou et al '08, Ellis et al '08]

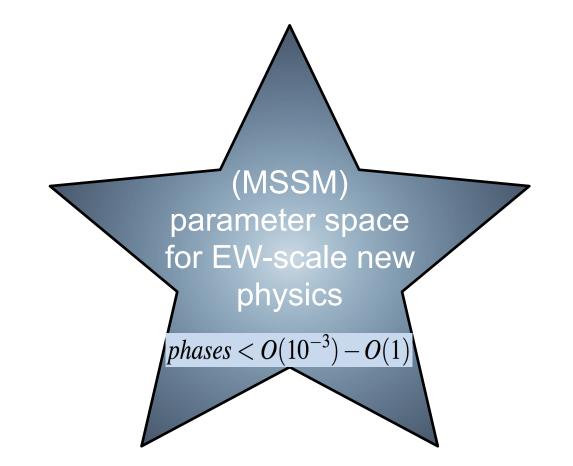
SUSY CP Problem



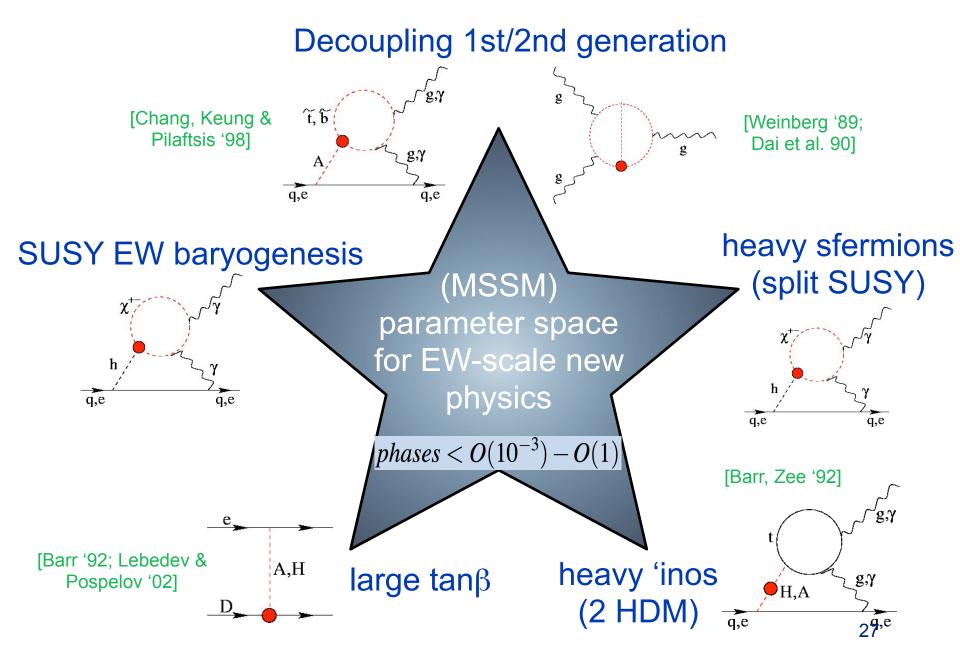
Generic Implications \Rightarrow Soft CP-odd phases $O(10^{-2} - 10^{-3})$

[Olive, Pospelov, AR, Santoso '05] [Also: Barger et al '01, Abel et al '01, Pilaftsis '02, Argyrou et al '08, Ellis et al '08]

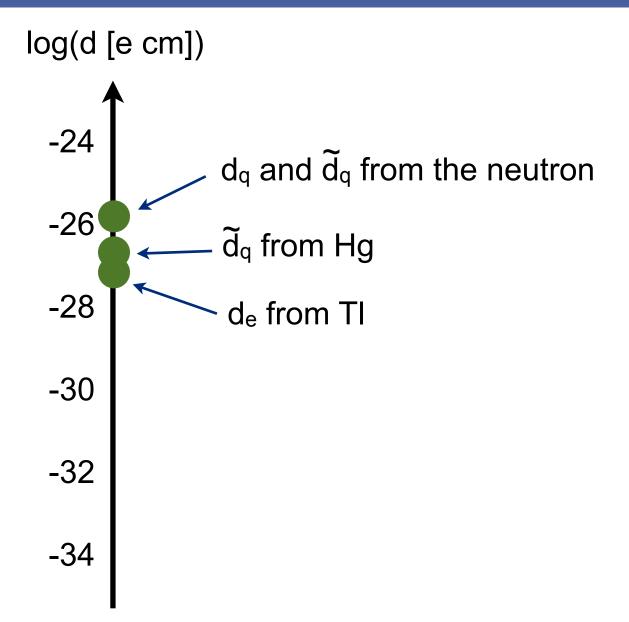
Generic 2-loop Sensitivity to O(1) phases



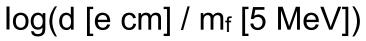
Generic 2-loop Sensitivity to O(1) phases

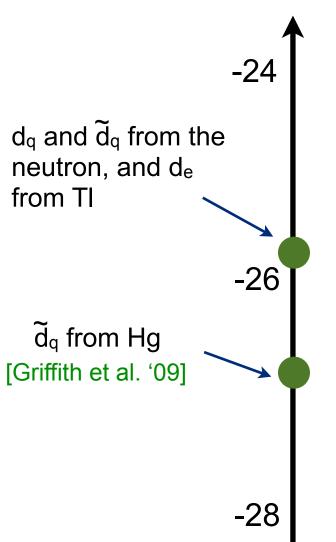


Generic Sensitivity at 2-loops

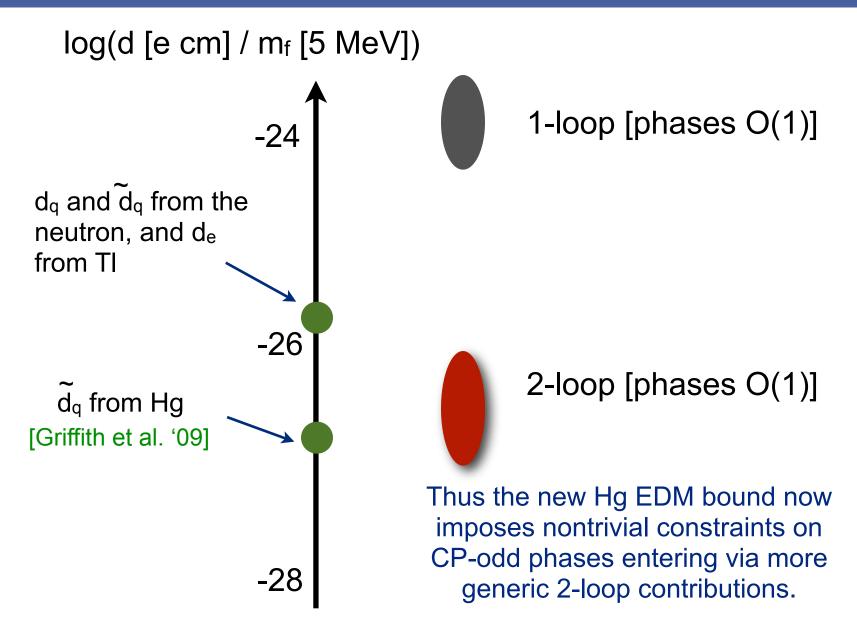


Generic Sensitivity at 2-loops





Generic Sensitivity at 2-loops



Concluding Remarks

 Precision tests can play a crucial role in probing fundamental symmetries at scales well beyond the reach of colliders.

 EDMs currently provide stringent constraints on CP-phases in models of new physics, e.g. the soft-breaking sector of the MSSM.

Concluding Remarks

• Precision tests can play a crucial role in probing fundamental symmetries at scales well beyond the reach of colliders.

• EDMs currently provide stringent constraints on CP-phases in models of new physics, e.g. the soft-breaking sector of the MSSM.

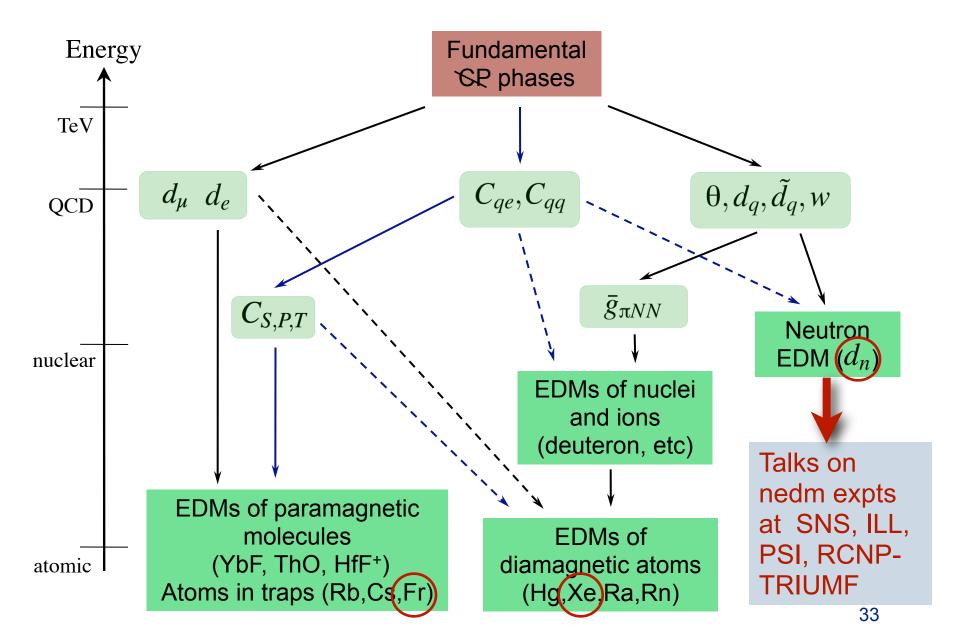
• The recent improvement in the Hg EDM bound now implies sensitivity to phases (in the 3rd generation) through 2-loop effects which are quite generic in TeV-scale new physics.

Full suite of next generation EDM experiments will probe these more generic "2-loop" contributions

Must all diagonal phases be small?

Is (large) TeV-scale CP violation intrinsically hidden by flavor?

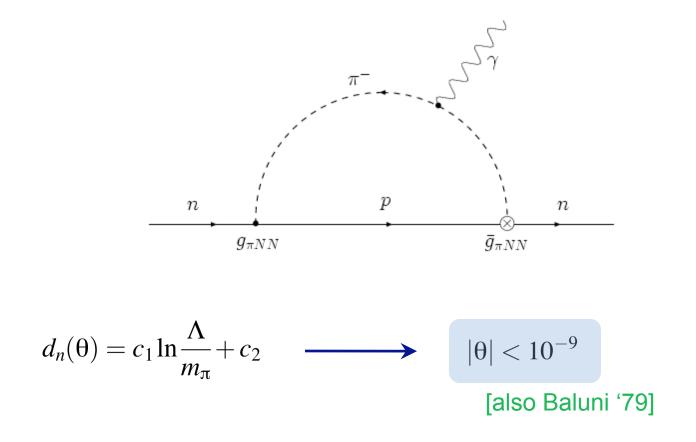
Future Developments...



Extra slides

Calculating the neutron EDM

• Chiral Logarithm: [Crewther, Di Vecchia, Veneziano & Witten '79]

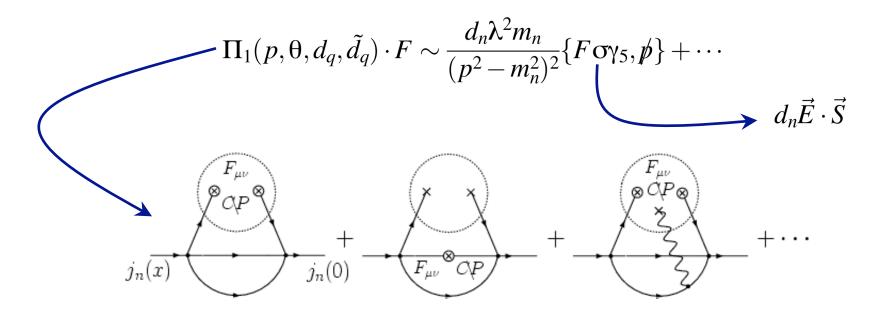


Calculating the neutron EDM

• QCD Sum Rules: [Pospelov & AR '99-'00]

— Neutron current: $j_n \sim d^T C \gamma_5 u d$

- Correlator: $\int d^4x e^{ip \cdot x} \langle \bar{j}_n(x), j_n(0) \rangle_{\mathcal{C}P,F} = \Pi_0(p) + \Pi_1^{\mu\nu}(p) F_{\mu\nu} + \cdots$



Calculating the neutron EDM

QCD Sum Rules: <u>Results</u>

— Important condensates:

s:
$$\begin{cases} \langle \bar{q}\sigma_{\mu\nu}q \rangle_F = \chi e_q F_{\mu\nu} \langle \bar{q}q \rangle \\ \langle \bar{q}G\sigma q \rangle = -m_0^2 \langle \bar{q}q \rangle \end{cases}$$

$$d_{n} = (0.4 \pm 0.2) \frac{|\langle \bar{q}q \rangle|}{(225 \ MeV)^{3}} \left[4d_{d} - d_{u} + \frac{1}{2} \chi m_{0}^{2} (4e_{d}\tilde{d}_{d} - e_{u}\tilde{d}_{u}) + \cdots \right] + O(d_{s}, w, C_{qq})$$

$$2.7e(\tilde{d}_{d} + 0.5\tilde{d}_{u})$$

Sensitive only to ratios of light quark masses

[Pospelov & AR '99,'00]

NB: PQ axion used to remove $\bar{\theta}$

$$\theta_{ind} = \frac{1}{2}m_0^2 \sum_{q=u,d,s} \frac{\tilde{d}_q}{m_q}$$

37

Comments on the SR NEDM calculation

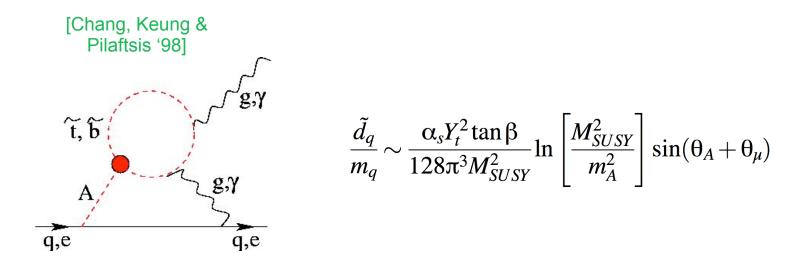
- Chiral properties
 Mixing with CP-conjugate currents
 - Generic treatment of all CP-odd sources (...)

- Dependence on sea-quark EDMsImprovements in precision (?)

$$egin{aligned} &\langle ar{q} \sigma_{\mu
u} q
angle_F = \chi e_q F_{\mu
u} \langle ar{q} q
angle \ &\langle ar{q} G \sigma q
angle = -m_0^2 \langle ar{q} q
angle \end{aligned}$$

Lattice ?

Generic SUSY CP constraints at 2-loop



The new Hg EDM bound [Griffith et al. '09] now imposes nontrivial constraints on 2-loop contributions, e.g. for stops with M \sim 100-200 GeV

$$|\theta_{3rd gen}| < 0.1$$

SUSY threshold sensitivity

If soft terms (approximately) conserve CP & flavour, what is the sensitivity to irrelevant operators (new thresholds) ?

[Pospelov, AR, Santoso '05, '06]

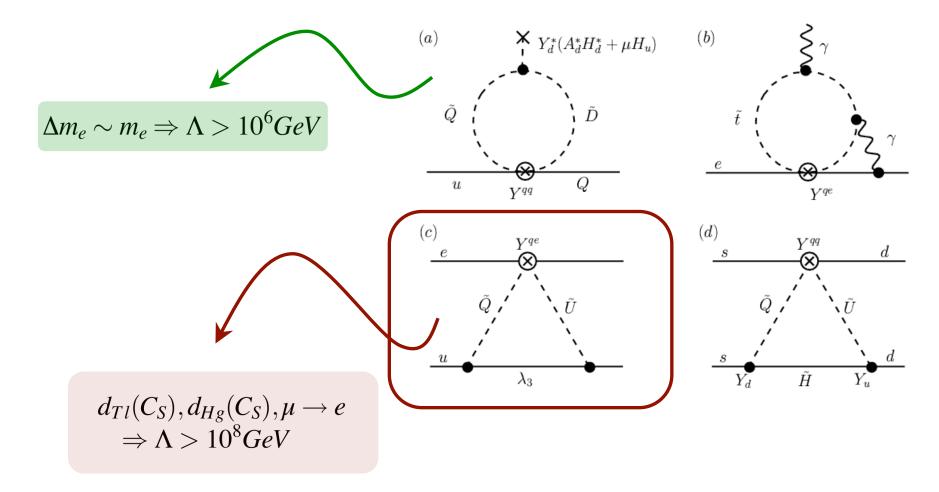
<u>Dim 5:</u>

$$\mathcal{W} = \mathcal{W}_{MSSM} + \frac{y_h}{\Lambda} (H_u H_d)^2 + \frac{Y^{qe}}{\Lambda} QULE + \frac{Y^{qq}}{\Lambda} QUQD + seesaw + baryon$$

- Contributions to e.g. EDMs will scale as "dim=5" $d_f \sim \frac{v_{EW}}{m_{soft}\Lambda}$
- Sensitivity depends on flavor structure of Y^{ff} — we will assume $Y^{ff'} \neq Y_f Y_{f'} \sim 1$

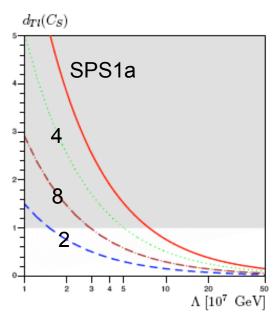
SUSY threshold sensitivity

Dimension-3,6 operators generated at the soft threshold



SUSY threshold sensitivity

operator	sensitivity to $\Lambda~({\rm GeV})$	source
Y^{qe}_{3311}	$\sim 10^7$	naturalness of m_e
$\mathrm{Im}(Y^{qq}_{3311})$	$\sim 10^{17}$	naturalness of $\bar{\theta}, d_n$
$\operatorname{Im}(Y_{ii11}^{qe})$	$10^7 - 10^9$	Tl, Hg EDMs
$Y_{1112}^{qe}, Y_{1121}^{qe}$	$10^7 - 10^8$	$\mu \to e$ conversion
$\operatorname{Im}(Y^{qq})$	$10^7 - 10^8$	$_{\rm Hg~EDM}$
$\operatorname{Im}(y_h)$	$10^3 - 10^8$	d_e from Tl EDM



[Pospelov, AR, Santoso '05, '06]

<u>Models:</u> e.g. MSSM + extended Higgs sector

 $\longrightarrow \{N, H'_u, H'_d\}$