Neutron β Decay at LANL UCNA, UCNB, and UCNb

Alexander Saunders Los Alamos National Laboratory

International Workshop on UCN and Fundamental Neutron Physics

April 8-9, 2010 RCNP

Osaka, Japan

- Introduction
- Motivation of neutron β decay measurements
- UCNA current status and plans
- UCNB plans and goals
- UCNb
- Summary
- Special Thanks to Alejandro Garcia, Brad Plaster, and Kevin Hickerson

Neutron β decay and V_{ud}

Angular correlations in polarized neutron decay (Jackson et al '57)

$$d\Gamma = d\Gamma_0 \times \left[1 + a \frac{\overrightarrow{p_e} \cdot \overrightarrow{p_v}}{E_e E_v} + b \frac{m_e}{E_e} + \left\langle \overrightarrow{\sigma_n} \right\rangle \cdot \left(A \frac{\overrightarrow{p_e}}{E_e} + B \frac{\overrightarrow{p_v}}{E_v} + D \frac{\overrightarrow{p_e}}{E_e} \times \frac{\overrightarrow{p_v}}{E_v} \right) \right]$$

$$a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2}, \quad A = -2\frac{|\lambda|^2 + \operatorname{Re}(\lambda)}{1 + 3|\lambda|^2}, \quad B = 2\frac{|\lambda|^2 - \operatorname{Re}(\lambda)}{1 + 3|\lambda|^2}, \quad b_n = \frac{|b_F| - 3\lambda|b_{GT}|}{1 + 3\lambda^2}$$

 $\delta\lambda/\delta a \sim 3.3; a = -0.103 \pm 0.004$ (PDG2009) $\delta\lambda/\delta A \sim 2.6; A = -0.1173 \pm 0.0013$ (PDG2009) $\delta\lambda/\delta B \sim 13.4; B = -0.9807 \pm 0.003$ (PDG2009)

 $\lambda \equiv \frac{G_A}{G_V}$

Motivation for A measurement

Motivation for A measurement

Vud from neutron decay

Principle of the A-coefficient Measurement

 $dW = [1 + \beta P A \cos \theta] d\Gamma(E)$

(End point energy = 782 keV)

UCNA Experiment — General Approach

Novel features: UCN from pulsed spallation source MWPC + plastic scintillator as β detector Ultimate Goal: 0.2% measurement of A (δ A/A = 0.2%)

- Neutron Polarization
 - UCN (can produce >99% polarization with 7T magnetic field)
 - Diamond-like carbon coated neutron guide (low depolarization)
- Background
 - Pulsed UCN source
 - MWPC+Plastic scintillator
- Electron backscattering
 - MWPC+Plastic scintillator
- Fiducial volume selection
 - MWPC
- Detector Characterization
 - Off-line calibration system
 - Larger light collection

UCNA Experiment — Apparatus

UCNA Apparatus in LANSCE Area B

2008 Data run: 32 M decays

One of three data periods

Preliminary Uncertainty Budget

	2007		2008/2009	
	Correction(%)	Uncertainty(%)	Correction (%)	Uncertainty (%)
Statistical	n/a	4	n/a	0.8
Polarization	0	1.3	0	???
Energy Calibration	0	1.5	0	0.6
Angle Effect	-1.6	0.5	-1.4, -2.6, -0.5	<0.3
Backscattering	1.1	0.4	1.7, 5.3, 1.2	0.3%, or 30% of correction
Background	n/a	n/a	0	<0.2
Muon cut			0	0.1
Gamma cut			0	0.3
TDC cut			0	0.24
Fiducial cut			0	0.2
SCS Field dip			0	0.2
Total sys		2.1		0.9 (no pol, 0.3% on bck)
Total		4.5		1.2% 5

A Correlation history

B History

VALUE	DOCUMENT ID		TECN	COMMENT	P =
0.9807±0.0030 OUR AVERAGE					
$0.9802 \!\pm\! 0.0034 \!\pm\! 0.0036$	SCHUMANN	07	CNTR	Cold n, polarized	0.997(1)
$0.967 \pm 0.006 \pm 0.010$	KREUZ	05	CNTR	Cold n, polarized	0.987(5)
0.9801 ± 0.0046	SEREBROV	98	CNTR	Cold n, polarized	0.975(3)
0.9894 ± 0.0083	KUZNETSOV	95	CNTR	Cold n, polarized	0.669(2)
1.00 ±0.05	CHRISTENSE	N70	CNTR	Cold n, polarized	0.87(3)
0.995 ± 0.034	EROZOLIM	70C	CNTR	Cold n, polarized	0.74(1)
Photomultiplier Tubes Scintillat	ion Detector	KEC	<u>IIB</u>	M. Schumann e PRL 99, 191803 and Ph.D. Thesi	t al., (2007); s

$$B_{\exp}(E_e) = \frac{N^{--}(E_e) - N^{++}(E_e)}{N^{--}(E_e) + N^{++}(E_e)}$$

B_{exp}(E_e) related to B via integration of W over the hemispheres

MSSM parameter space

Concept of UCNB Measurement

Detect electrons and protons in coincidence to reduce backgrounds

Measure electron energy with Si detectors

Detector bias enables proton detection

Mounted in UCNA spectrometer

Silicon Detectors

127 hexagonal pixels, 70 mm² Up to 2 mm thick in hand

- Electrons
 - 800 keV electrons
 1.7 mm
 - Few keV resolution
 - Few ns timing
- Protons
 - 20-30 keV protons
 - 100 nm dead layer(10 keV)

Experiment Layout within 1 T magnet

Symmetric vs. asymmetric configuration

To achieve 0.1% on B, with 10 Hz detected coincidences

Configuration	Symmetric	Asymmetric
Sensitivity	$\sigma_{\rm B}=2.6/\sqrt{N}$	$\sigma_B = 5.4 / \sqrt{N}$
Required Counts	~1x10 ⁷	~3x10 ⁷
Running Time	2 weeks	6 weeks
Advantage	Better sensitivity;	No penning trap of e ⁻
	Cancels det. Sens. to higher order	

Preliminary Error Budget for UCNB

Error Source	Correction	Uncertainty	Comment
Statistical	n/a	<0.05%	Weeks of run time at UCNA rates
β backscattering	0.3%	0.06%	No decay trap foils
Missed coincidences	0.1%	<0.03%	1 ms coinc. window
Polarization	0.1%	0.02%	Demonstrated in UCNA
Magnetic Mirror	-0.04%	0.02%	UCN absorbers
β energy calib.	0.1%	<0.01%	Silicon detectors
p backscattering	0.07%	<0.01%	Nico et al. 2005
Accidental coinc.	-0.1%	<0.01%	10 Hz and 1 ms coinc.
Total	0.6%	0.09%	

Test run expected 9/2010

UCNb: the Fierz Interference Term

$$d\Gamma = d\Gamma_0 \times \left[1 + a \frac{\overrightarrow{p_e} \cdot \overrightarrow{p_v}}{E_e E_v} + b \frac{m_e}{E_e} + \left\langle \overrightarrow{\sigma_n} \right\rangle \cdot \left(A \frac{\overrightarrow{p_e}}{E_e} + B \frac{\overrightarrow{p_v}}{E_v} + D \frac{\overrightarrow{p_e}}{E_e} \times \frac{\overrightarrow{p_v}}{E_v} \right) \right]$$

$$b_n = \frac{\left|b_F\right| - 3\lambda \left|b_{GT}\right|}{1 + 3\lambda^2}$$

 P_b 1.5 1.5 1.6 1.5 1.6 1.6 1.5 1.6

 b_F is measured via superallowed nuclear beta decay

b_n shifts the electron energy spectrum And has never been measured...

The UCNb experiment

Background Elimination and UCN Bottle

- Scintillator Sandwich
 - Deuterated scintillator traps UCNs
 - Fast scint. (3 mm) detects Betas
 - Slow scint. vetoes backgrounds

UCNb at LANSCE

UCNb

 $\sigma_b = \frac{7.5}{\sqrt{N}}$

Weak sensitivity implies 60 days needed for <10⁻³ measurement (at 30 Hz)... But can run in parallel with other experiments using UCN beam.

Hope to take data summer 2010

UCNA Collaboration

R. W. Pattie, Jr.,^{1,2} J. Anaya,³ H. O. Back,^{1,2} J. G. Boissevain,³ T. J. Bowles,³ L. J. Broussard,^{2,4} R. Carr,⁵ D. J. Clark,³ S. Currie,³ S. Du,¹ B. W. Filippone,⁵ P. Geltenbort,⁶ A. García,⁷ A. Hawari,⁸ K. P. Hickerson,⁵ R. Hill,³ M. Hino,⁹ S. A. Hoedl,^{7,10} G. E. Hogan,³ A. T. Holley,¹ T. M. Ito,^{3,5} T. Kawai,⁹ K. Kirch,³ S. Kitagaki,¹¹ S. K. Lamoreaux,³ C.-Y. Liu,¹⁰ J. Liu,⁵ M. Makela,^{3,12} R. R. Mammei,¹² J. W. Martin,^{5,13} D. Melconian,^{7,14} N. Meier,¹ M. P. Mendenhall,⁵ C. L. Morris,³ R. Mortensen,³ A. Pichlmaier,³ M. L. Pitt,¹² B. Plaster,^{5,15} J. C. Ramsey,³ R. Rios,^{3,16} K. Sabourov,¹ A. L. Sallaska,⁷ A. Saunders,³ R. Schmid,⁵ S. Seestrom,³ C. Servicky,¹ S. K. L. Sjue,⁷ D. Smith,¹ W. E. Sondheim,³ E. Tatar,¹⁶ W. Teasdale,³ C. Terai,¹ B. Tipton,⁵ M. Utsuro,⁹ R. B. Vogelaar,¹² B. W. Wehring,⁸ Y. P. Xu,¹ A. R. Young,^{1,2} and J. Yuan⁵

1Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA 2Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA 3Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 4Department of Physics, Duke University, Durham, North Carolina 27708, USA 5W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA 6Institut Laue-Langevin, 38042 Grenoble Cedex 9, France 7Physics Department, University of Washington, Seattle, Washington 98195, USA 8Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA 9Research Reactor Institute, Kyoto University, Kumatori, Osaka, 590-0401, Japan 10Physics Department, Princeton University, Princeton, New Jersey 08544, USA 11Tohoku University, Sendai 980-8578, Japan 12Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA 13Department of Physics, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada 14Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA 15Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA 16Department of Physics, Idaho State University, Pocatello, Idaho 83209, USA

UCNB and UCNb Collaborations

"UCNB" Collaboration

R. Alarcon, S. Balascuta, L. Broussard, R. Carr, V. Cirigliano, B. Filippone,
A. García, P. Geltenbort, D. Harris, A. Hawari, K. Hickerson, S. Hoedl,
A. Holley, G. Hogan, J. Liu, M. Makela, R. Mammei, J. Martin,
P. McGaughey, D. Melconian, M. Mendenhall, C. Morris, R. Pattie,
A. Pérez-Galván, M. Pitt, B. Plaster, J. Ramsey, R. Rios, A. Salas-Bacci,
A. Saunders, S. Seestrom, E. Tatar, R.B. Vogelaar, B. Wehring,
W.S. Wilburn, A. Young

"UCNb" Collaboration
K. P. Hickerson^{1,} B. W. Filippone¹,
A. Young⁴, R. Pattie⁴, L. Broussard²,
J. C. Ramsey³, M. Makela³, C. Morris³, A. Saunders³

¹California Institute of Technology ²Duke University ³Los Alamos National Laboratory ⁴North Carolina State University

Conclusions

- Full suite of neutron beta correlation experiments at Los Alamos
- UCNs give unique advantages
- UCNA producing competitive results
 Will eventually reach ~0.2%
- UCNB will probe new territory
- UCNb is a brand new measurement