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Motivations for precision measurements

1. The neutron decay rate is determined by the strength of 
the weak interaction.

Conversely, neutron decay is one out of four possible 
sources to determine the weak strength in processes 
involving the lightest quarks (Vud)  

2. Neutron decay drives the primordial available “fuel” for the 
synthesis of light elements (4He, D, 3He, 7Li).

The neutron lifetime constitutes an input parameter to 
calculate the primordial 4He abundance (one of the pillars 
of Big Bang theory).
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Weak universality and quark mixing
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CKM unitarity and Vud

)61(999950222 .VVV ubusud =++

Deviations from unitarity provide signatures of physics beyond SM

[J.C. Hardy and I.S. Towner   PRC 79 (2009) 055502]

• Four possible sources to determine |Vud| from experiments:

- Nuclear super-allowed pure Fermi (0+→ 0+) transitions (Vector)

- Nuclear T=1/2 mirror transitions         [O.N-C and N.Severijns, PRL 102 (2009) 142302]

- Neutron decay

- Pion beta decay (Vector)

CudV θcos=
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Input for Big Bang Nucleosynthesis

• As the universe expands, the temperature drop 
results in a departure from equilibrium conditions 

(neutron-proton inter-conversion breaks). Neutrons 
are free to decay.

• Nucleosynthesis begins effectively below the photo-
dissociation threshold for deuterons (2.23 MeV).

• Nearly all surviving neutrons end up in bound 4He 

nuclei. A sensitive parameter to determine Yp is the 

neutron lifetime.

[B.D. Fields and S. Sarkar PDG-2008]

Predicted BBN abundances using the PDG-2008 value for the neutron lifetime
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Present status

PDG 2008:  (885.7±0.8) s

• All recent storage experiments (including the two most precise) used 

material storage of UCN (although not under the same conditions).

• Other trapping techniques, with different potential sources of systematic 

effects, are needed. 

A.Serebrov et al., PLB 605 (2005) 72

PRC 78 (2008) 035505



8UCN2010, April 8-9 2010, RCNP Osaka, Japan                                     O. Naviliat-Cuncic

The UCN source at ILL-Grenoble

• High flux reactor

• UCN density at experiments: ρ ∼ 10 cm-3

• Density of magnetically stored UCNs: ρ ∼ 0.5 cm-3

(from initial UCN rate measurement and control of storage volume)



9UCN2010, April 8-9 2010, RCNP Osaka, Japan                                     O. Naviliat-Cuncic

Principle of 3D magnetic trapping

• For  µn = -60.3 neV/T, a 2T field generates a 120 neV barrier.

• Force due to field gradient, F = -µ (dB/dz), repels only one spin state.

• Use permanent magnets.

• Step 1: 1D confinement

1 – permanent magnets

2 – magnetic poles

• Step 2: 2D confinement

• Step 3: 3D confinement

- top (gravity)

- bottom (magnetic shutter)

Add
magnetic

shutter
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…in real life

• 20 segments; 560 NdFeB magnets; FeCo poles

• inner walls covered with Fomblin oil
(reflect “wrong” spin neurons during filling and depolarized 

neutrons during storage)

• field gradient near wall: 2 T/cm

• 15 l total- (9 l storage-) volumes

(trappers team)
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Experimental setup

to
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Main elements:

lift, trap, solenoid, shutter, detector

Lift: Fomblin coated Al cylinder + PE disk
Trap: Fomblin coated magnets and poles

[V.F. Ezhov et al., NIM A 611 (2009) 167]
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Trap filling sequence

material
shutter

UCN detector

lift
cylinder

UCN

1.Fill lift volume
2.Close lift volume

3.Move lift down
4.Open lift and

move lift upvlift << vn
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Monitoring the trap filling

0 20 40 60 80 100
0

50

100

150

200

250

Lift moves

Open

material

shutter

down / upFilling lift volume

Close

material

shutter

C
o
u
n
ts
 /
 s

Time [s]

Magnetic

shutter left

OFF

Magnetic

shutter

switched

ON

Trapped UCNs

→ The detection of “wrong” spin neutrons during filling provides a 
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Normalized time spectra

Storage time

1000 s

1300 s

1800 s

→ Continuous monitoring of “leaking” neutrons (which are depolarized in 

the trap, reflected by the Fomblin coated walls and detected)

stop storage measurement

(start 100 s background 

measurement)
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Principle of data analysis

If the neutron lifetime would be infinitely long

and all depolarized leaking neutrons were detected…

S1

L
S2

…then   S1 = L + S2

• Neutrons which are 

depolarized in the trap, 

might be lost by collisions 

with the walls. Only a 

fraction ε will be detected 
during the storage time.

BUT…
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Tuning the leaking neutrons

• Leaks are very small under optimized trapping conditions → difficult to control.

• To optimize the trapping, the outer solenoid produces an additional field such as to 

eliminate trap imperfections (zero field regions) avoiding then leaks due to depolarization. 

• Conversely, the outer solenoid can be 

tuned with the opposite field such as to 

increase trap imperfections and hence also 

leaks (“forced depolarization”).

magnets
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Determination of the “efficiency”

Rates after storage time 1000 s

• The efficiency of leakage detection can be obtained from the 

measured rates, with/without the forced depolarization active.
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→ Missing UCNs: Nmis → Detected depolarized UCNs: Ndd

Efficiency: ε = Ndd / Nmis ε = 0.90±0.02
(convoluted with the neutron decay)
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Effect of residual gas pressure
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Assuming losses due to interactions with residual gas ∝ p : σ = 0.15(4) (s torr)-1

For a precision < 1s : p < 7.5×10-6 torr;           In practice p ≈ 1.2×10-6 torr
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Result and error sources

• Since ε is determined from data,

there is only one free parameter: τn

τn = 877.9 ± X.X(stat)± ?.?(syst) [s]

Leaks FD “OFF”

Storage 1800s FD “OFF”

Storage 1800s FD “ON”

Leaks FD “ON”

Background

Source

Storage

Independent measurements for the 

determination of ε need to be long 
enough in order not to be a dominant 

source of error.
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Future plans

Construction of new shutter (completed) Field maps calculations for new trap (completed)

• Construction of a new trap with a 90 l storage volume

• 60 segments disposed on a Ø80x40cm2 cone, Ø6cm guide

• NdFeCo magnets and FeCoNi poles 

• Fill trap from top with adapted “lift”

• Use forced depolarization to change trapping conditions (leaks)

• Add spin analysis system with UCN detection

• Project funded (France/Russia); parts to be shipped to ILL in 2010
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Summary

• The use of permanent magnets has provided so far the most sensitive 

value for the neutron lifetime with magnetically stored UCNs.

• Key features of the trap for the measurement of the neutron lifetime are:

- filling of the trap from top with a slow lift

- continuous monitoring of leaking neutrons

- tuning leaks by depolarizing neutrons inside the trap

• A final value of the neutron lifetime is expected to be issued soon from 

measurements performed with the prototype trap.

• An improved setup is under construction which will enable to reach a 

statistical precision below 1s (and hopefully solve the existing puzzle).
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